Vrije Universiteit Brussel
Faculty of Sciences
Department of Mathematics and Data Science
Pleinlaan 2, B-1050
Brussel, Belgium
E. Jespers, A. Van Antwerpen, L. Vendramin, Nilpotency of skew braces and multipermutation solutions of the Yang-Baxter equation, Communications in Contemporary Mathematics (2022) 2250064 (20 pages), DOI: 10.1142/S021919972250064X.
Ferran Cedó, Eric Jespers, Lukasz Kubat, Arne Van Antwerpen, Charlotte Verwimp, On various types of nilpotency of the structure monoid and group of a set-theoretic solution of the Yang–Baxter equation, 35 pages, Journal of Pure and Applied Algebra 227 (2023), no. 2, Paper No.107194.
I. Colazzo, E. Jespers, A. Van Antwerpen and C. Verwimp, Left non-degenerate set-theoretic solutions of the Yang-Baxter equation and semitrusses, Journal of Algebra 610 (2022) 409–462.
Andreas Bächle, Geoffrey Janssens, Eric Jespers, Ann Kiefer and Doryan Temmerman, A dichotomy for integral group rings via higher modular groups as amalgamated products, J. Algebra 604 (2022), 185–223.
Ferran Cedó, Eric Jespers, Charlotte Verwimp, Corrigendum to ``Structure monoids of set-theoretic solutions of the Yang–Baxter equation’’, 9 pages, Publ. Mat., accepted 22 March 2022.
F. Cedó, E. Jespers, J. Okniński, Primitive set-theoretic solutions of the Yang-Baxter equation, Communications in Contemporary Mathematics, Vol. 24, No. 09, 2150105 (2022).
Eric Jespers, Wei-Liang Sun, Nilpotent decomposition in integral group rings. J. Algebra 575 (2021), 127–158.
Andreas Bächle, Mauricio Caicedo, Eric Jespers and Sughanda Maheshwary, Global and local properties of finite groups with only finitely many central units in their integral group ring, J. Group Theory 24 (2021), no. 6, 1163–1188, DOI 10.1515/jgth-2020-0165.
E. Jespers, L. Kubat, A. Van Antwerpen, L. Vendramin, Radical and weight of skew braces and their applications to structure groups of solutions of the Yang-Baxter equation, Advances in Mathematics 385 (2021), Paper No. 107767, 20 pp.
E. Jespers, Structure of group rings and the group of units of integral group rings: an invitation, Indian J. Pure Appl. Math. 52 (2021), no. 3, 687–708. https://doi.org/10.1007/s13226-021-00179-5.
F. Cedó, E. Jespers, C. Verwimp, Structure monoids of set-theoretic solutions of the Yang-Baxter equation, Publ. Mat. 65 (2021), 499–528.
F. Cedó, Eric Jespers and Jan Okniński, Every finite abelian group is a subgroup of the additive group of a finite simple left brace, J. Pure Appl. Algebra 225 (2021), no. 1, Paper No. 106476, 10 pp.
F. Cedó, Eric Jespers and Jan Okniński, Set-theoretic solutions of the Yang–Baxter equation, associated quadratic algebras and the minimality condition, Rev. Mat. Complut. 34 (2021), no. 1, 99–129.
I. Colazzo, E. Jespers, L. Kubat, Set-theoretic solutions of the Pentagon Equation, Comm. Math. Phys. 380 (2020), no. 2, 1003–1024.
Eric Jespers, Lukasz Kubat and Arne Van Antwerpen, Corrigendum and Addendum to ``The structure monoid and algebra of a non-degenerate set-theoretic solution of the Yang–Baxter equation’’, Trans. Amer. Math. Soc. 373 (2020), 4517–4521. https://doi.org/10.1090/tran/8057.
Ferran Cedó, Eric Jespers and Jan Okniński, An abundance of simple left braces with abelian multiplicative Sylow subgroups, Rev. Mat. Iberoam. 36 (2020), no. 5, 1309–1332.
E. Jespers, L. Kubat, A. Van Antwerpen, L.Vendramin, Factorization of skew braces, Math. Ann. 375 (2019), no. 3-4, 1649–1663. ISSN: 0025-5831 (print), 1432-1807 (electronic)
Eric Jespers, Lukasz Kubat and Arne Van Antwerpen, The structure monoid and algebra of a non-degenerate set-theoretic solution of the Yang-Baxter equation, Trans. Amer. Math. Soc. 372 (2019), no. 10, 7191–7223.
Eric Jespers, David Riley and Mayada Shahada, On polynomials that are not quite an identity on an associative algebra, Israel J. Math. 234 (2019), no. 1, 371–391. ISSN: 0021-2172 (print), 1565-8511 (electronic)
E. Jespers and A. Van Antwerpen, Left semi-braces and solutions to the Yang–Baxter equation, Forum Math. (2019) (31), 241–263, https://doi.org/10.1514/forum–2018–0039, ISSN: 1435-5337.
David Bachiller, Ferran Cedó, Eric Jespers and Jan Okniński, Asymmetric product of left braces and simplicity; new solutions of the Yang-Baxter equation. Commun. Contemp. Math. 21 (2019), no. 8, 1850042, 30 pp. ISSN (print): 0219-1997 | ISSN (online): 1793-6683. |
E. Jespers, M. Van Campenhout, Finitely generated algebras defined by homogeneous quadratic monomial relations and their underlying monoids II. J. Algebra 492 (2017), 524–546. ISSN: 0021-8693.
D. Bachiller, F. Cedo, E. Jespers, J. Okninski, A family of irretractable square-free solutions of the Yang-Baxter equation, Forum Math. 29(6) (2017), 1291–1306. ISSN: 1435-5337.
G. Janssens, E. Jespers, D. Temmerman, Free products in the unit group of the integral group ring of a finite group, Proc. Amer. Math. Soc. 145 (2017), no. 7, 2771–2783.
A. Gordienko, G. Janssens, E. Jespers, Semigroup graded algebras and graded pi-exponent, Israel J. Math. 220 (2017), no. 1, 387–452.
E. G. Goodaire, E. Jespers and C. Polcino Milies, Alternative loop rings, North-Holland Mathematics Studies Vol.184, Amsterdam, 1996.
E. Jespers and J. Okniński, Noetherian semigroup algebras, Series: Algebra andApplications, Vol. 7, Springer, 2007. Hardcover ISBN-10: 1-4020-5809-8 ISBN-13: 978-1-4020-5809-7.
E. Jespers, A. del Rio, Group Ring Groups, Vol 1: Orders and Generic Constructions of Units, Volume I, De Gruyter, Berlin, 447 pages, 2015. ISBN 978-3-11-037278-6, eBook (PDF) ISBN 978-3-11-037294-6, eBook (EPUB), ISBN 978-3-11-038617-2. 2015.
E. Jespers, A. del Rio, Group Ring Groups, Vol 2: Structure Theorems of Unit Groups, De Gruyter, Volume II, De Gruyter, Berlin, 217 pages. 2015. ISBN 978-3-11-041149-2, eBook (PDF), ISBN 978-3-11-041150-8, eBook (EPUB), ISBN 978-3-11-041275-8.
https://www.mathgenealogy.org/id.php?id=67803